MCP Tools Reference

Station provides 41 MCP tools for complete agent management, execution, evaluation, and infrastructure control. All tools are available through your AI assistant (Claude, Cursor, OpenCode, etc.).

Tool Categories

CategoryToolsPurpose
Agent Management11Create, configure, and manage agents
Agent Execution4Run agents and inspect results
Evaluation & Testing7Test and benchmark agents
Reports & Analytics4Performance reporting
Environment Management3Manage environments
MCP Server Management5Configure MCP servers
Tool Discovery2Find available tools
Scheduling3Automate agent runs
Bundles1Package agents
Faker System1Mock data generation

Agent Management

create_agent

Create a new agent with prompts, tools, and configuration.

"Create a cost-analyzer agent that uses AWS tools to analyze spending"

Parameters:

  • name (required) - Agent name
  • description (required) - What the agent does
  • prompt (required) - System prompt
  • environment_id - Target environment
  • max_steps - Maximum execution steps (default: 5)
  • tool_names - List of tools to assign
  • sandbox - Sandbox configuration (python/node/bash)
  • output_schema - JSON schema for structured output

update_agent

Modify an existing agent’s configuration.

"Update cost-analyzer to use max_steps 10"

update_agent_prompt

Update only the agent’s system prompt.

"Update the prompt for incident-coordinator to be more concise"

delete_agent

Remove an agent permanently.

"Delete the old-analyzer agent"

list_agents

List all agents with optional filters.

"List all agents in the production environment"

Parameters:

  • environment_id - Filter by environment
  • enabled_only - Show only enabled agents
  • limit - Max results (default: 50)
  • offset - Pagination offset

get_agent_details

Get complete configuration for a specific agent.

"Show me details for the incident-coordinator agent"

get_agent_schema

Get the input schema for an agent’s dotprompt template.

"What variables does cost-analyzer accept?"

add_tool

Assign an MCP tool to an agent.

"Add the __aws_cost_explorer tool to cost-analyzer"

remove_tool

Remove a tool from an agent.

"Remove __deprecated_tool from my-agent"

add_agent_as_tool

Create multi-agent hierarchies by adding an agent as a callable tool.

"Add logs-investigator as a tool for incident-coordinator"

remove_agent_as_tool

Break an agent hierarchy link.

"Remove logs-investigator from incident-coordinator's tools"

Agent Execution

call_agent

Execute an agent with a specific task.

"Run cost-analyzer with task: Analyze last week's AWS spending"

Parameters:

  • agent_id (required) - Agent to execute
  • task (required) - Task/prompt to run
  • variables - Input variables for dotprompt
  • async - Run asynchronously (default: false)
  • store_run - Save to history (default: true)
  • timeout - Timeout in seconds (default: 300)

list_runs

List agent execution history.

"Show me the last 20 runs for cost-analyzer"

Parameters:

  • agent_id - Filter by agent
  • status - Filter by status (success/error/running)
  • limit - Max results (default: 50)

inspect_run

Get detailed information about a specific run.

"Show me details for run 123"

Parameters:

  • run_id (required) - Run to inspect
  • verbose - Include full tool calls (default: true)

list_runs_by_model

Filter runs by AI model.

"Show me all runs using gpt-4o-mini"

Evaluation & Testing

generate_and_test_agent

Generate test scenarios and run comprehensive agent testing.

"Generate 50 test scenarios for incident-coordinator and run them"

Parameters:

  • agent_id (required) - Agent to test
  • scenario_count - Number of scenarios (default: 100)
  • max_concurrent - Parallel executions (default: 10)
  • variation_strategy - comprehensive/edge_cases/common

batch_execute_agents

Run multiple agents concurrently for testing.

"Run cost-analyzer and security-scanner in parallel with 5 iterations each"

Parameters:

  • tasks - JSON array of execution tasks
  • iterations - Times to run each (default: 1, max: 100)
  • max_concurrent - Parallel limit (default: 5, max: 20)

evaluate_benchmark

Run LLM-as-judge evaluation on a completed run.

"Evaluate run 123 using the benchmark system"

evaluate_dataset

Evaluate an entire dataset of agent runs.

"Evaluate the dataset at /path/to/dataset"

export_dataset

Export runs for external analysis.

"Export the last 100 runs to Genkit format"

Parameters:

  • filter_agent_id - Filter by agent
  • filter_model - Filter by model
  • limit - Max runs (default: 100)
  • output_dir - Output directory (default: ./evals/)

list_benchmark_results

List previous evaluation results.

"Show me benchmark results for run 123"

get_benchmark_status

Check status of an evaluation task.

"What's the status of benchmark task abc123?"

Reports & Analytics

create_report

Create a new performance report definition.

"Create a weekly report for the SRE team measuring incident response time"

Parameters:

  • name (required) - Report name
  • environment_id (required) - Environment to evaluate
  • team_criteria (required) - JSON defining success metrics
  • agent_criteria - Per-agent metrics
  • filter_model - Filter by AI model

generate_report

Run benchmarks and generate a report.

"Generate the SRE team performance report"

list_reports

List all report definitions.

"Show me all reports for production"

get_report

Get details of a specific report.

"Show me the latest SRE report results"

Environment Management

create_environment

Create a new environment.

"Create a staging environment"

delete_environment

Delete an environment and all its data.

"Delete the old-staging environment"

list_environments

List all environments.

"What environments do I have?"

MCP Server Management

add_mcp_server_to_environment

Add an MCP server configuration.

"Add a Datadog MCP server to production"

Parameters:

  • environment_name (required)
  • server_name (required)
  • command (required) - Server command
  • args - Command arguments
  • env - Environment variables
  • description - Server description

update_mcp_server_in_environment

Update an existing MCP server.

"Update the datadog server to use a new API key"

delete_mcp_server_from_environment

Remove an MCP server.

"Remove the deprecated-server from production"

list_mcp_servers_for_environment

List servers in an environment.

"What MCP servers are in production?"

list_mcp_configs

List all MCP configurations.

"Show me all MCP configs across environments"

Tool Discovery

discover_tools

Discover tools from MCP server configurations.

"Discover what tools are available from the AWS server"

Parameters:

  • environment_id - Filter by environment
  • config_id - Specific MCP config

list_tools

List available tools with search.

"List all tools that mention 'cost'"

Parameters:

  • environment_id - Filter by environment
  • search - Search term
  • limit - Max results (default: 50)

Scheduling

set_schedule

Schedule an agent to run automatically.

"Schedule cost-analyzer to run daily at 9 AM"

Parameters:

  • agent_id (required)
  • cron_schedule (required) - 6-field cron expression
  • schedule_variables - Variables for scheduled runs
  • enabled - Enable/disable (default: true)

get_schedule

View an agent’s schedule.

"What's the schedule for cost-analyzer?"

remove_schedule

Remove an agent’s schedule.

"Remove the schedule from cost-analyzer"

Bundles

create_bundle_from_environment

Package an environment as a distributable bundle.

"Create a bundle from the production environment"

Parameters:

  • environmentName (required)
  • outputPath - Output file path

Faker System

faker_create_standalone

Create an AI-powered mock data server.

"Create a prometheus faker that generates Kubernetes metrics"

Parameters:

  • environment_name (required)
  • faker_name (required)
  • description (required)
  • goal (required) - AI instruction for data generation
  • tools - JSON array of tool definitions
  • auto_sync - Sync to environment (default: true)
  • persist - Persist to template.json (default: true)

Usage Examples

Create an Incident Response Team

You: Create an incident response team with a coordinator and three specialists

Claude: I'll create the team for you.

[Using create_agent with name="incident-coordinator"...]
✅ Created incident_coordinator

[Using create_agent with name="logs-investigator"...]
✅ Created logs_investigator

[Using add_agent_as_tool...]
✅ Added logs_investigator as tool for incident_coordinator

[Continues for all specialists...]

Your incident response team is ready!

Run a Cost Analysis

You: Analyze yesterday's AWS costs

Claude: I'll run the cost analyzer.

[Using call_agent with agent_id="21", task="Analyze yesterday's costs"...]

Results:
- Total spend: $1,247.32
- Top service: EC2 ($580)
- 15% increase from last week
- Anomaly detected: Lambda costs up 40%

Generate Performance Report

You: How is my SRE team performing?

Claude: [Using generate_report with report_id="sre-team"...]

Team Performance: 7.5/10
- Incident response: 8.5/10
- Tool utilization: 8.0/10
- Root cause accuracy: 7.5/10
- Communication: 6.5/10

Tool Naming Convention

  • Station tools appear with prefix based on your MCP client
  • In OpenCode: opencode-station_create_agent
  • In Claude Desktop: station-create_agent
  • Tool names from MCP servers use __ prefix: __aws_cost_explorer

Next Steps